Index

Introduction .. 3
Research Groups
 Theoretical Physics .. 4
 Complex Fluids, NMR and Surfaces .. 7
 Laser-Assisted Synthesis and Processing 13
 Multiscale Nanostructured Materials .. 18
 Membrane, Chemical and Electrochemical Processes 20
Contacts .. 26

Credits

CeFema Forum Coordination: Teresa Morgado, Diná Afonso and Pedro Sebastião
Graphic Design: Mário Barros
Photography: Ana Casimiro

Funded by FCT under the strategic project UID/CTM/04540/2013.
FCT Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR
Instituto Superior Técnico - Universidade de Lisboa (IST - UL), is the largest school of Engineering, Science and Technology in Portugal. Since 1911, IST’s mission is providing top quality higher education. It has collaborated with many prestigious RD&I and technology transfer institutions worldwide.

Internationalization has been a key aim with increasing participations in international academic networks (e.g. CLUSTER, TIME, CESAER, MAGALHÃES, EIT-KIC InnoEnergy). IST has participated in Dual Master programmes, and joint PhD programmes with MIT, CMU, UT-Austin, and EPFL and in EC-funded projects, such as: FP7, H2020, Marie Curie Actions, ENERGY, ERA, ERC, EURATOM, LEONARDO DA VINCI, SOCRATES, TEMPUS, LIFE, ALFA, etc.

The Center of Physics and Engineering of Advanced Materials (CeFEMA) is a unique research group of IST, because it congregates theoretical and experimental physicists, materials, chemical, and mechanical engineers, allowing an integrated approach to new materials development, from first principles design and modelling to materials synthesis, testing and application.

CeFEMA’s mission consists of advancing materials science and engineering by theoretical and experimental research to the highest international scientific standards; providing advanced education / training of young researchers at high scientific level; promoting knowledge transfer to national / international development; pursuing projects and technology transfer to industry.
TP
Theoretical Physics Group

Research areas

- Search for new phases of matter
- Dense and condensed systems
- Applications of information theory
- Systems far from equilibrium
- Resonances and bound states
- Spintronics
- Differential geometry and applications to physical systems

Goals

Search for new phases of matter, their characterization and potential for new understanding of physical systems and possible interesting applications.

Strengthen existing collaborations with experimental groups and foster new collaborations both inside the Center and with other scientists.

Study of systems far from equilibrium and interrelations between various branches of physics, mathematics and information theory.

Presence of non-local extended structures or defects in many of the systems studied that require treatments beyond local field theories.

Magnetization switching times of a macrospin
Theoretical Physics Group

Current topics

Study of interactions in magnetism, superconductivity and topological phases in graphene and in novel 2D materials with technological potential.

Structure and decays of exotic odd-even and odd-odd nuclei at the extremes of stability.

Spin dynamics in magnetic nanostructures induced by ultrafast optical injection of charge and magnetic excitations.

Study of non-equilibrium phase transitions and a route to thermalization in strongly interacting systems.

Employment of Resonance-Spectrum Expansion, both for scattering and production processes.

Geometric phases and their connection to physical problems and topology.

Nilsson levels for the protons in 180Ta
Energy-momentum of some spin excitations
CFNMRS
Complex Fluids, NMR and Surfaces Group

Research Topics

- Physical properties and applications of soft matter and complex fluids (e.g. liquid crystals (LC), polymers, dendrimers, ionic liquids)
- Optoelectronic devices based in the thin film technology (e.g. TFTs, solar cells)
- Study of low dimensional systems (e.g. 0-, 1- and 2-dimensional structures like WO₃ nanospheres, ZnO nanorods, and GaN/AlGaN superlattices)

Experimental Facilities

- NMR (superconducting magnet 7T; variable field 0-2.4T; fast field cycling 10-4 T – 0.2 T)
- Polarising Optical Microscopy
- Powder X-ray diffraction
- LC cells Electro-Optical characterization
- Atomic Force Microscopy
- Thin film deposition facilities (e.g. plasma-enhanced chemical vapor deposition, RF plasma-enhanced reactive thermal evaporation, hybrid pulsed laser deposition, chemical bath deposition, thermal evaporation)
- Thin film characterization (conductivity and photoconductivity, visible spectroscopy, FTIR, profilometry; Raman; photoluminescence; photocapacitance; microwave reflection; laser interference)
Complex Fluids and NMR

In the field of Liquid Crystals (LC), the research efforts of the group involved most of the LC phases and LC / polymer composite materials. The study of those systems by means of NMR and electro and magneto-optical techniques is important for the understanding of their fundamental properties and technological applications such as electrical controllable transparency windows and display technology with low environmental impact.

Ionic liquids are compounds with increasing impact on the development, design and the use in clean technology (e.g. “Green Chemistry”, CO₂ harvesting). The main scientific outcomes from the research activities on this topic encompass the description of molecular dynamics, structure and molecular interactions and their influence on macroscopic properties of ionic liquids based systems.
The study of molecular order and dynamics of soft matter systems as base materials for hosting dopants is another key research topic of the group. These advanced composite systems might present a great variety of applications such as pharmaceutical drug carriers, enhanced transport properties in membranes, energy storage, gas absorption, development of fuel cell electrolytes, CO$_2$ capture, functionalized ionic liquid systems with magnetic and electric controlled properties.

The development of new fast field cycling (FFC) NMR relaxometers with a very large frequency operational range is also a key activity of the group. The expected spin-off of this technology to the industry has been supported by spreading the use of FFC NMR in the study of a diversified set of systems.
Thin Films and Surfaces

The AFM characterization of membranes for blood treatment, the tailoring of such membranes to improve hemocompatibility, and the preparation and analysis of biological liquid-crystal photosensitive films is an important research activity of the group.

The study of thin films and low dimensional quantum structures include: the application of new dopant predeposition methods at low temperature for the production of CMOS integrated circuits and for a-Si/c-Si heterojunctions of HIT type; the study and application of transparent conductive oxide (TCOs) thin films in sensors, in particular in photodetectors; the deposition of: (0-D) nanospheres of tungsten and molybdenum oxide, (1-D) nanorods of ZnO and ferroelectric NKN, and (2-D) superlattices of (amorphous) a-Si:H/a-SiC:H and (crystalline) GaN/AlGaN. Higher sensitivity and increased spatial resolution of these structures are important for applications such as medical imaging.
Thin Films and Surfaces

Thin film deposition techniques include chemical vapour deposition (CVD), rf-plasma enhanced reactive thermal evaporation (PERTE), hybrid pulsed laser deposition (PLD), chemical bath deposition (CBD), and thermal evaporation with subsequent electrolytic transport. The characterization of morphological, structural, and optoelectronic properties of the thin films is achieved by means of SEM and XRD, complemented by AFM. Both recombination and transport are studied by photoluminescence and current-voltage characteristics and supported by non-invasive and contactless methods like photocapacitance and transient microwave reflection measurements. Materials ranged from wide-bandgap semiconductors and magnetic films, to thin organic films and biological membranes are also investigated.

On a higher level, the group studies new material systems and process technologies. Examples are the use of copper oxide films in field-effect transistors, the inclusion of ferroelectric thin films for hysteresis and memory effects, the realization of pixel detectors based and zinc oxide thin films, and the fabrication of solar cells using a new doping procedure.

SEM image of a polycrystalline ferroelectric NKN thin film
CFNMRS
Complex Fluids, NMR and Surfaces Group

Team

Ana Maria de Amaral
ana.de.amaral@tecnico.ulisboa.pt

António Casa Nova Ribeiro
antoniocarlosribeiro@tecnico.ulisboa.pt

António Ferraz
antonio.ferraz@tecnico.ulisboa.pt

Carlos Cruz
carlos.cruz@tecnico.ulisboa.pt

Carlos Nunes de Carvalho
canc@tecnico.ulisboa.pt

João Luís Maia Figueirinhas
joao.figueirinhas@tecnico.ulisboa.pt

Pedro Brogueira
pedro.brogueira@tecnico.ulisboa.pt

Pedro Sebastião
pedro.jose.sebastiao@tecnico.ulisboa.pt

Reinhard Horst Schwarz
reinhard.schwarz@tecnico.ulisboa.pt
LASP
Laser-Assisted Synthesis and Processing Group

Research Areas

Ultrafast laser materials processing
- Study of self-organised nanostructures created by ultrafast laser processing and their application in medicine, microfluidics and photonics.
- Spin-dependent properties of hybrid heterostructures created in laser patterned thin films.
- Phase transformations due to ultrafast laser irradiation of materials.
- Ultrafast laser ablation for minimally invasive surgery. Effect of ultrafast laser ablation on the viability of biological tissues.

Materials and nanostructures for applications in energy, thermal management and spintronics
- Thermoelectric properties of Si-based heterostructures.
- Study of electrical, magnetic and magnetotransport properties of composite materials for magnetoresistive and spintronic devices.
LASP
Laser-Assisted Synthesis and Processing Group

Research Areas

Study of physical and electrochemical properties of SnO2/C nanostructures prepared by pulsed laser deposition.
- Synthesis and characterization of core-shell nanoparticles for fuel cells electrocatalysts.
- Laser processing and synthesis of metallic and composite materials for medical and aerospace applications
- Laser deposition of single crystalline high-temperature materials for the aerospace industry.
- Laser-assisted combinatorial design of metallic alloys and metal-matrix composite systems.

Light detection and ranging (LIDAR) and Laser-induced flourescent - light detection and ranging (LIF-LIDAR) environmental applications.

Materials characterization and testing.

Integrity, reability and failure studies.

Metal 3D printing by laser powder deposition
Examples of FCT Projects

SEM wires observation showing the friction marks on the wires
http://dx.doi.org/10.4028/www.scientific.net/MSF.730-732.325
Examples of EU Projects

NANOMICRO – Nano/Micro Integration in Micromanufacturing, FP7-NMP-2008-SME-2, FP7-NMP-2008-3.5-1, Project 228815.

RAMATI – Rapid manufacturing of titanium implants, FP6 STREP Project NMP2-CT-2003-505954.

Femtosecond laser ablation of cortical bone, for orthopaedic surgery applications.
Up: Craters produced in static mode with 130 fs (on the left) and 560 fs (on the right), using a 1030 nm laser. Down: Track produced with 25 fs, 775 nm laser (on the left); Volume ablated using a 560 fs, 1030 nm laser (on the right).
LASP
Laser-Assisted Synthesis and Processing Group

Team

Amélia Almeida
amelia.almeida@tecnico.ulisboa.pt

Andrei Utkin
andrei.oukine@tecnico.ulisboa.pt

António Jorge Silvestre
asilvestre@fc.ul.pt

Augusto Moita de Deus
amd@tecnico.ulisboa.pt

José Mariano
jmariano@ualg.pt

Olinda Conde
omconde@fc.ul.pt

Rui Vilar
rui.vilar@tecnico.ulisboa.pt

Teresa Morgado
teresa.morgado@tecnico.ulisboa.pt

Vítor Oliveira
voliveira@dem.isel.ipl.pt
The group is focused on materials engineered so that multiple length scales are simultaneously explored. The primary activity is centred on multiscale dispersions in bulk nanostructured materials tailored for functional and structural performance under extreme conditions.

- Development, production and characterization of multiscale bulk nanostructured metal and ceramic matrix composites via the powder route and solid/liquid processing for functional and structural performance under extreme conditions.
- Development of new dental materials and characterization of its wear and tribological behaviour.
- Development and characterization of submicron and nanoparticles, and their colloidal suspensions.
- Development and characterization of intermetallic compounds and complex metal phases, their phase transitions and crystalline defects.
- Development of new concrete high strength formulations based on dispersion of submicron carbon materials.
- Mechanical characterization at fine scales.

The group is focused on materials engineered so that multiple length scales are simultaneously explored. The primary activity is centred on multiscale dispersions in bulk nanostructured materials tailored for functional and structural performance under extreme conditions.
Development colloidal suspensions

The CuO-Tiron system. Zeta potential vs. pH curves for CuO suspensions. (o Bare CuO particles; ● 0.1 wt % Tiron).

Calculated Dissociation vs. pH curve for Tiron presented in gray background (C₆H₄O₃S₂⁻; C₆H₅O₃S⁺; C₆H₅O₃S³⁻). Predominant species in each pH range up to pKa, are shown.

Introduction
Research areas

Synthesis and characterization (SEM, TEM, XPS, AFM, ATR-FTIR) of:
• polymeric membranes based on new nanostructured functional materials;
• bio and hemocompatible bi-soft segment polyurea/polyurethane membranes for blood oxygenators and immunoisolation;
• polymeric, mixed matrix and nanocomposite membranes, by tailoring membrane design, morphology and characteristics on a molecular level to enhance mass transport.

Modelling and optimization of flow and mass transfer in plate-and-frame and spiral wound modules, artificial organs and microfluidic systems, by using Computer Fluid Dynamics, and experimental techniques of Particle Image Velocimetry and Holographic Interferometry.

Design and optimization of membrane hybrid processes (Ultraper filtration / Nanofiltration / Reverse Osmosis / Electrodialysis) for applications in environment, water, chemicals, medicines, medical devices, food, wine, biorefineries, etc.
MCEP
Membrane, Chemical and Electrochemical Processes Group

Research areas

Synthesis, characterization and testing of new materials and electrochemical processes for energy and environmental applications:

- novel materials and technologies for industrial application to environmental friendly energy conversion and storage processes
- (nano)materials for anodes / cathodes in low temperature fuel cells, viz. metal-based nanosized catalysts for borohydride electro-oxidation, three dimensional cathodes for $\text{O}_2 / \text{H}_2\text{O}_2$ reduction, small-scale borohydride fuel cells and alcohol-fuelled proton exchange membrane fuel cells;
- novel alkaline electrolysers and materials for water electrolysis, viz. functional cathodes for H_2 production;
- lithium batteries with enhanced recyclability and disposable rechargeable Zn / MnO$_2$ printable batteries on paper.
MCEP
Membrane, Chemical and Electrochemical Processes Group

Publications

MCEP
Membrane, Chemical and Electrochemical Processes Group

Publications

Electrodialysis bench-scale unit EUR2C-7P18
MCEP
Membrane, Chemical and Electrochemical Processes Group

Publications

MCEP
Membrane, Chemical and Electrochemical Processes Group

Team

Ana Maria Brites Alves
ana.b.alves@tecnico.ulisboa.pt

Biljana Paunkovic
biljana.paunkovic@tecnico.ulisboa.pt

César Sequeira
cesarsequeira@tecnico.ulisboa.pt

Diná Afonso
dina.afonso@tecnico.ulisboa.pt

Diogo Santos
diogosantos@tecnico.ulisboa.pt

Luis Amaral
luis.m.amaral@tecnico.ulisboa.pt

Luis Miguel Minhalma
miguel.minhalma@tecnico.ulisboa.pt

Norberta de Pinho
marianpinho@tecnico.ulisboa.pt

Paulo Brito
pbrito@estgp.pt

Vitor Geraldes
vitor.geraldes@tecnico.ulisboa.pt

PAR 273A Potentiostat / Galvanostat for electrochemical / impedance studies
Pedro Brogueira | CeFEMA President
pedro.brogueira@tecno.ulisboa.pt

Teresa Morgado | CeFEMA Forum President
teresa.morgado@tecno.ulisboa.pt

Diná Afonso | CeFEMA Forum Council
dina.afonso@tecno.ulisboa.pt

Pedro Sebastião | CeFEMA Forum Council
pedro.jose.sebastiao@tecno.ulisboa.pt

CeFEMA
Instituto Superior Técnico
Physics Building, 3rd floor
Av. Rovisco Pais, 1
1049-001 Lisboa
Portugal
+351 218 419 092
+351 218 419 142